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Abstract:		

Deliverable	D1.4	makes	climate	change	and	its	uncertainty	accessible	to	ARANGE.	Based	on	the	
ensemble	 of	 regional	 climate	 simulations	 from	 the	 EU	 FP6	 project	 ENSEMBLE	 a set	 of	 five	
transient	simulations	(representing	uncertainty)	is	statistically	downscaled	to	each	of	the	seven	
ARANGE	 case	 study	 regions	 by	 means	 of	 quantile	 mapping.	 Each	 of	 the	 downscaled	 climate	
change	scenarios	 is	represented	by	 time	series	of	100	years	(2001	to	2100)	on	daily	basis	 for	
temperature,	precipitation,	water	vapor	deficit,	and	solar	radiation.		
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1 Introduction 
One	 of	 the	 aims	 of	 the	 EU-FP7	 project	 ARANGE	 (www.arange-project.eu)	 is to	 assess	 climate	
change	 effects	 on	 ecosystem	 service	 (ES)	 provisioning	 in	 mountainous	 regions	 in	 Europe.	 In	
order	 to	 analyze	 conflicts	 and	 complementarities	 among	 ES	 from	 stand	 to	 landscape	 scales,	
improved	models	for	the	assessment	and	projection	of	ES	as	well	as	novel	planning	and	decision	
support	 tools	 are	 developed	 and	 applied	 in	 seven	 case	 study	 regions.	 The	 methodological	
approach	grounds	on	state-of-the-art	models	for	forest	dynamics	and	ES	assessment,	which	are	
driven	by	meteorological	data	representing	current	and	possible	future	climate	conditions.

The	objective	of	task	T1.2	in	work	package	WP	1	is	to	make	climate	change	and	its	uncertainty	
accessible	to	the	project.	For	all	case	study	regions,	transient	climate	change	scenarios	covering	
a	 planning	 period	 up	 to	 the	 year	 2100	 are	 provided	 based	 on	 selected	 regional	 climate	
simulations	 from	 the	EU	FP6	project	ENSEMBLES	 (Hewitt	 and	Griggs,	2004;	www.ensembles-
eu.org).	 The	 wide	 range	 of	 regional	 climate	 simulations	 from	 ENSEMBLES	 enables	 to	 assess	
uncertainty	in	climate	change	projections	and	forms	the	basis	for	a	skillful	selection	of	a	subset	
of	five	representative	climate	scenarios,	which	reasonably	span	the	range	of	uncertainty.	These	
representative	 scenarios	 are post-processed	 with	 empirical-statistical	 techniques	 in	 order	 to	
reduce	biases	and	 to	adapt	 the	climate	scenarios	 to	 the	 specific	 local	 climate	conditions	of	 the	
case	study	regions	as	represented	by	the	baseline	climate	 (see	Deliverable	D1.1,	and	Thurnher	
2013).	Finally,	transient	time	series	until	the	end	of	the	21st century	on	a	daily	basis	are	derived	
from	the	five	representative	scenarios	and	handed	over	to	the	consortium.		

2 Available Datasets 
During	the	ENSEMBLES	project,	22	(15) highly	resolved	(~25	km	grid	spacing)	regional	climate	
model	(RCM)	simulations	until	the	middle	(end)	of	the	21st	century	have	been	conducted	for	the	
European	 continent.	 The	 simulations	 were	 driven	 by	 eight	 different	 global	 climate	 models	
(GCMs)	employing	the	greenhouse	gas	(GHG)	emission	scenario	A1B	(Nakicenovic	et	al.,	2000).	
Due	 to	 limited	 computational	 resources,	 not	 all	 possible	 GCM/RCM	 combinations	 could	 be	
realized	 (cf.	 Table	 1),	 but	 the	 simulation	matrix	 is	 still	 dense	 enough	 to	 cover	 uncertainty	 in	
climate	change	to	a	reasonable	extend	(van	der	Linden	and	Mitchell,	2009;	Heinrich	et	al.,	2013).		

For	ARANGE,	only	 those	 simulations	 reaching	 the	end	of	 the	21st	 century	 are	of	 interest.	This	
reduces	 the	 number	 of	 simulations	 to	 15.	 Since	 there	 is	 some	 concern	 about	 the	 physical	
consistency	 of	 one	 of	 the	 ENSEMBLES	 simulations	 (Wilcke	 et	 al.,	 2013),	 the	 number	 of	
simulations	is	further	reduced.	In total,	14	simulations	are qualified	for	task	T1.2	(cf.	Table	1).		
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Each	of	the	14	simulations	consists	of	2D	fields	(~25	km	grid	spacing)	on	a	daily	basis	(i.e.	time	
series	of	daily	values	from	the	2nd	half	of	the	20th	century	to	the	end	of	the	21st	century)	for	the	
variables	maximum	temperature,	minimum	temperature,	precipitation,	and	global	radiation.		

Table	1:	GCM/RCM	matrix	of	the	ENSEMBLES	project.	22	climate	simulations	reaching	the	middle	of	the	
21st	century	are	marked	by	grey	areas,	the	orange	areas	 indicate	15	simulations	reaching	the	end	of	 the	
21st 	in	yellow	cells.
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CNRM_ALADIN4.5
CNRM_ALADIN5.1 X 

DMI_HIRHAM X X X 
ETHZ_CLM X 
GKSS_CLM

ICTP_RegCM X 
KNMI_RACMO X 

METNO_HIRHAM
HC_HadCM3 X X X 

MPI_REMO X 
OURANOS_CRCM

SMHI_RCA X X X 
UCLM_PROMES

VMGO_RRCM

The	second	input	data	represents	local	conditions	of	the	current	climate	(the	baseline	climate)	in	
each	 of	 the	 study	 regions	provided	 by	 task	T1.2	 (Thurnher	2013;	D1.1).	 The	 baseline	 climate	
consists	 of	 stochastic time	 series	 data	 on	 daily	 basis	 (maximum	 temperature,	 minimum	
temperature,	daylight	 temperature,	precipitation,	global	 radiation,	and	vapor	pressure	deficit).	
These	 time	 series	 were	 generated	 by	 the	 weather	 generator	 LARS-WG	 (Racsko	 et	 al.,	 1991;	
Semenov	and	Barrow,	1997)	on	the	grounds	of	observational	data	and	post-processed	with MT-
CLIM	(Running	et	al.,	1987;	Thornton	and	Running,	1999)	to	implement	altitudinal	zones,	slopes	
and	 aspects	 for	 a	 selected	 number	 of	 representative	 sites	 in	 each	 case	 study	 area	 (CSA).	 The	
baseline	climate	is	derived	 from	station	data	and	E-OBS	(Haylock	et	al.,	2008)	 from	the	period	
1961	 to	 1990.	 Though	 generated	 by	 a	 weather	 generator,	 the	 baseline	 climate	 reflects	 the	
statistical	properties	of	the	climate	during	the	reference	period.		

3 Methodological Approach 
In	 order	 to	 derive	 climate	 change	 scenario	 data	 (i.e.	 the	 driving	 data	 for	 the	 forest	 and	 ES	
models)	in	each	case	study	region	from	the	two	sources	of	 input	data,	the	ENSEMBLES	climate	
simulations	and	the	baseline	climate,	three	steps	have	to	be	accomplished:	

(1) The	climate	simulations	need	to	be	downscaled	to	the	case	study	regions	and	corrected	
for	biases.
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(2) Since	the	climate	simulations	do	not	contain	daylight	temperature	and	vapour	pressure	
deficit,	these	variables	need	to	be	derived	from	available	data.

(3) Five	 climate	 simulations	 have	 to	 be	 selected	 in	 a	 way,	 so	 that	 the	 full	 range	 of	 the	
ENSEMBLES	simulations	is	covered.	

In	the	following	subsections,	these	three	steps	are	described	in	detail.	

3.1 Downscaling and Bias Correction 
The	ENSEMBLES	simulations	are	given	on	a	grid	with	~25	km	grid	spacing	while	 the	baseline	
climate	(treated	as	point-wise	data)	is	representative	for	each	case	study	region	and	is	given	for	
different	altitudes,	slopes	and	aspects.	In	order	to	accomplish	(1)	bridging	the	gap	in	scales,	(2)	
taking	 account	 for	 local	orographic	 effects,	 and	 (3)	 	 correcting	 the	 error	 characteristics	of	 the	
simulations,	a	quantile	based	approach	(Quantile	Mapping;	QM;	Dobler	and	Ahrens,	2008;	Piani	
et	al.,	2010;	Themeßl	et	al.,	2011)	is	applied.		

QM	 originates	 from	 the	 empirical	 transformation	 of	 Panofsky	 and	 Brier	 (1968)	 and	 can	 be	
classified	as	a	distribution	based	model	output	statistics	approach	(Maraun	et	al.,	2010).	It	is	an
empirical-statistical	downscaling	and	error	correction	method	 (DECMs)	 that	 aims	at	adjusting	
the	empirical	cumulative	distribution	functions	(ECDFs)	of	model	data	towards	a	reference	data	
(cf.	 Figure	 1) and	 therefore	 accounts	 for	 errors	 in	 the	 shape	 of	 the	 modelled	 distribution	
(Themeßl	 et	 al.,	 2011;	 Déqué,	 2007).	 The	 potential	 of	 QM	 for	 correcting	 GCM	 data	 has	 been	
demonstrated	by	e.g.	Dettinger	et	al.	 (2004)	and	Wood	et	al.	 (2004).	In	ARANGE,	QM	has	been	
selected	 to	 be	 applied	 on	 RCM	 data	 as	 it	 already	 has proofed	 its	 robustness	 and	 superior	
performance	 even	 for	 non-normally	 distributed	 parameters	 such	 as	 daily	 precipitation	 (e.g.	
Dobler	 and	 Ahrens, 2008;	 Themeßl	 et	 al.,	 2011;	 2012;	 Piani	 et	 al.,	 2009;	 Finger	 et	 al.,	 2012).	
Nonetheless,	one	has	to	bear	in	mind	that	QM	affects	the	climate	change	signal	and	relies	on	the	
assumption,	 that	 the	 relationship	 between	 statistical	 properties	 of	 the	 model	 output	 of	 the	
control	simulation	and	the	observational	data	is	not	affected	by	climate	change.	In	other	words,	
this	 relationship	 is	 supposed	 to	 be	 stationary.	 However,	 even	 in	 the	 worst	 cases	 of	 non-
stationarity,	QM	still	clearly	improves	biases	of	the	raw	RCM	output	(Wilcke	et	al.,	2013).

Figure	1:	Generation	of	 error	 corrected	 time	series	by	mapping	 the	uncorrected	RCM	values	 (black)	 to	
reference	data	from	the	calibration	period	(green).	
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The	 application	 of	 QM	 within	 ARANGE	 builds	 up	 on	 point-wise	 (the	 case	 study	 regions	 are	
independent	from	each	other)	and	daily	time	series.	A	31-day	moving	window	covering	all	years	
in	the	training	period	(1961	to	1990)	centred	on	the	day	to	be	corrected	is	used	for	constructing	
this	 particular	 day	 of	 the	 year.	 This	 enables	 annual-cycle	 sensitive	 correction	 as	 well	 as	 a	
sufficiently	large	sample	size.	The	baseline	climate	(used	as	reference	data)	is	given	for	each	case	
study	region	which	is	associated	with	its	central	point.	The	surrounding	four	grid	cells	in	the	raw	
RCM	data	 are	 linearly	 interpolated	 to	 the	 central	 point	 of	 the	 study	 region	 giving	 the	 climate	
simulation	data	 to	be	 corrected.	Due	 to	 the	 linear	 interpolation,	 influences	 from	multiple	 grid	
cells	are	taken	 into	account	which	 increases	the	reliability	of	 the	method.	Variables	of	concern	
are:	maximum	temperature,	minimum	temperature,	precipitation,	and	global	radiation.

Since	the	baseline	climate	takes	account	of	local	effects	in	each	case	study	region	and	since	the	
baseline	 climate	 is	 used	 to	 calibrate	 the	 QM	method,	 the	 local	 effects	 are	 persevered	 in	 the	

nly	valid	within	the	limits	of	the	method,	i.e.	as	long	as	
the	principle	of	stationarity	is	not	affected	by	climate	change.	

QM	is	generally	applicable	to	any	of	the	meteorological	variables,	however	some	specific	details	
have	 to	 be	 regarded,	 especially	 for	 precipitation.	 Dealing	 with	 precipitation,	 a	 frequency	
adaptation	is	implemented	to	parry	a	deficiency	of	QM	leading	to	a	wet	bias.	That	bias	occurs	if	
the	dry	day	frequency	in	the	raw	RCM	is	larger	than	in	the	reference	data. The	overestimation	
would	lead	to	a	positive	bias	after	the	correction	step	(Themeßl	et	al.,	2012).	Although	this	bias	
is	 a	 rare	 case	 and	 the	 RCM -
Gutowski	et	al.,	2003)	more	often,	it	can	regionally	result	in	considerable	biases.	Therefore,	the	
model	data	below	0.1	mm	is	divided	to	finer	bins	with	width	of	0.01	mm.	Dry	days	are	generated	
by	randomly	sampling	the	observational	distribution	into	the	first	bin	(0.00	mm	-	0.01	mm).	This	
completely	removes	the	artificially	introduced	bias.

3.2 Calculation of Missing Variables 
Not	 all	 ENSEMBLES	 simulations	 contain	 the	 year	 2100	 completely.	 In	 such	 cases,	 the	 last	
complete	year	 (i.e.	2098)	 is	 repeated	 in	order	to	generate	 time	series	reaching	December	31st,	
2100.		

The	 ENSEMBLES	 simulations	 do	 not	 contain	 all	 requested	 variables.	 For	 instance,	 daylight	
temperature	 and	 vapour	 pressure	 deficit	 are	 missing.	 These	 variables	 are	 calculated	 from	
downscaled	and	corrected	variables.	Thereby,	the	same	empirical	relations	are	applied	as	they	
have	 been	 used	 in	 calculating	 the	 baseline	 climate:	 daylight	 temperature	 is	 calculated	 from	
maximum	 and	 minimum	 temperature,	 vapour	 pressure	 deficit	 is	 calculated	 from	 daylight	
temperature	and	minimum	temperature	(cf.	Thurnher,	2013):

Equation	1 tday	=	0.45	*	(tmax	 	tavg),	with	tavg	=	(tmax	+	tmin)/2	 	

	 	 tday	...	daylight	temperature	[°C]		
	 	 tmax	...	maximum	temperature	[°C]	 	

tmin	...	minimum	temperature	[°C]
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Equation	2 vpd	 =	 610.7	 *	 [exp((17.38 * tday)/(tday + 239)) - exp((17.38 * tmin)/(tmin + 239))]

	 	 vpd	...	vapour	pressure	deficit	[Pa]

The	ENSEMBLES	models	do	not	have	the	same	calendar.	Some	models	use	the	Julian,	some	the	
Gregorian	 calendar,	 some	 have	 a	 fixed	 calendar	 with	 360	 days	 per	 year.	 Since	 the	 baseline	
climate	has	a	time	axis	with	365	days	per	year	(cf.	Thurnher,	2013),	the	ENSEMBLES	simulations	
have	to	be	converted	to	this	scheme.	This	is	accomplished	in	the	following	way:	If	the	simulation	
has	the	Gregorian	calendar,	the	29th Februarys	of	the	leap	years	are	simply	skipped.	In	the	case	
of	 a	 360	 day	 calendar,	 the	 missing	 five	 days	 (May	 31st,	 July	 31st,	 August	 31st,	 October	 31st,	
December	 31st)	 are	 linearly	 interpolated	 from	 their	 surrounding	 days	 as	 this	 approach	 has	
proven	successful	in	other	climate	change	impact	studies	(e.g.	CLAVIER,	ACQWA,	IMPACT2C).

3.3 Selection of Climate Change Scenarios 
In	climate	projections,	uncertainty	is	determined	by	three	components:		

(1) Natural	variability		 	
This	 component	 includes	 variations	 that	 are	 directly	 driven	 by	 periodic	 external	
forcings	(e.g.	the	seasonal	cycle),	variations	due	to	the	non-linear	interplay	of	feedbacks	
within	 the	 climate	 system	 (e.g.	 ice-albedo	 feedback),	 and	 variations	 associated	 with	
random	fluctuations	in	physical	(e.g.	weather)	or	chemical	factors	(Ghil,	2002).		

(2) External	forcings	 	
These	refer	to	anthropogenic	forcing	due	to	the	emission	of	greenhouse	gases	and	land	
use	changes.		

(3) Model	formulation	 	
Climate	 models	 represent	 simplified	 (imperfect)	 approximations	 to	 an	 incompletely	
understood	climate	system	(Stainforth	et	al.,	2007).		

Uncertainty	due	to	natural	variability	in	the	ENSEMBLES	simulations	was	implicitly	regarded	via	
the	use	of	different	GCMs,	but	uncertainty	due	to	the	GHG	emission	scenario	was	not	 included	
(all	 simulations	 where	 driven	 by	 one	 GHG	 scenario).	 A	 rough	 estimate	 to	 which	 extend	 the	
overall	uncertainty	is	underestimated	by	only	using	one	emission	scenario	can	be	obtained	from	
Prein	 et	 al.	 (2011).	 The	 authors	 analyzed	 temperature	 and	 precipitation	 over	 Europe	 of	 84	
simulations	 from	 23	 GCMs	 and	 found:	 the	 relative	 contribution	 of	 the	 emission	 scenario	 to	
uncertainty	until	mid	of	the	21st	century	is	very	small	(below	6	%)	for	both	variables;	by	end	of	
the	century,	this	fraction	increases	regarding	to	temperature	up	to	35	%,	but	remains	very	small	
with	regard	to	precipitation;	the	largest	source	of	uncertainty	is	the	formulation	of	the	climate	
models	themselves.	 In	addition,	RCMs	are	also	known	to	feature	substantial	model	errors	(e.g.	
Frei	et	al.,	2003;	Hagemann	et	al.,	2004;	Suklitsch	et	al.,	2008,	2011)	which	affect	the	assessment	
of	climate	change	impacts.	This	strongly	pronounces	the	large	influence	of	climate	models	and	
hence	the	selection	of	climate	simulations	is	not	straightforward.	One	of	the	open	questions	is	
whether	models	should	be	weighted	with	respect	to	their	performance	for	representing	current	
climate	 conditions.	 However,	 there	 is	 no	 consensus	 in	 the	 current	 discussion	 about	 suitable	
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performance	metrics	(Tebaldi	and	Knutti,	2007)	and	weighted	model	ensembles	have	not	clearly	
demonstrated	their	advantages	over	un-weighted	ensembles	(e.g.,	Knutti	et	al.,	2010;	Déqué	and	
Somot,	2010).

Due	to	 the	 importance	of	 the	models	and	 the	 inconclusive	discussion	on	model	weighting,	 the	
selection	of	 the	 subset	of	 five	 representative	simulations	 is	purely	based	on	 the	 spread	of	 the	
ENSEMBLSE	simulations.	Nevertheless,	since	knowledge	about	the	climate	system	is	incomplete	
and	climate	models	are	simplified	pictures	of	the	known	part	of	the	climate	system,	there	is	an	
inherent	chance	 for	underestimating	uncertainty.	Hence,	estimating	uncertainty	by	means	of	a	
limited	number	of	(imperfect)	simulations	is	the	working	hypotheses	in	task	T1.2.		

The	 selection	process	 is	based	on	 error	 corrected	mean	daily	 daylight	 temperature	 and	mean	
daily	precipitation	changes	of	the	summer	half	year,	since	these	variables	are	supposed	to	have	
most	impact	on	forest	and	ES	models	(Lexer	M.,	personnel	communication).	In	the	case	there	is	
large	precipitation	(e.g.	 in	case	study	region	5,	the	Scandinavian	mountains)	global	radiation	is	
also	 taken	 into	 account.	 This	 reduces	 the	 number	 of	 investigated	 variables	 to	 a	maintainable	
size.	In	order	to	mimic	the	ENSEMBLES	range,	those	four	simulations	outlining	the	ENSEMBLES	
range	 and	 one	 lying	 next	 to	 the	 ensembles	 median	 are	 selected.	 Thereby,	 the	 two	 30	 year	
periods	1961	 to	1990	and	2071	 to	2100	are	used	 to	 calculate	mean	climate	 change	 signals	of	
concern.		

Figure	2:	Climate	change	signals	of	daylight	temperature	[°C],	precipitation	[%],	solar	radiation	[W/m²],	
and	 vapor	 pressure	 deficit	 [Pa]	 in	 case	 study	 region	 CS1,	 Cabeza	de	Hierro,	 on	 a	 flat	 plane	 elevated	 to	
2000	m.	 	Differences	between	the	periods	1961	to	1990	and	2071	to	2100	of	the	half	year	means	(April	
16th	 to	 September	 15th)	 from	 downscaled	 and	 corrected	 ENSEMBLES	 simulations	 are	 shown.	 Selected	
representative	simulations	are	labeled.
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This	 selection	 process	 is	 conducted	 separately	 for	 each	 case	 study	 region.	 Table	 2	 lists	 the	
selected	simulations	per	case	study	region.		

Table	2:	Selected	simulations	for	the	case	study	regions	rendering	climate	change	uncertainty.

Case 
study Member of the ENSEMBLES ensemble 

CS1 HC-
HadRM3_HadCM3Q16

DMI-
HIRHAM5_BCM 

ICTP-
RegCM_ECHAM5-r3 SMHI-RCA_HadCM3Q3 MPI-

REMO_ECHAM5-r3

CS2 HC-
HadRM3_HadCM3Q16

DMI-
HIRHAM5_BCM 

HC-
HadRM3_HadCM3Q3 SMHI-RCA_HadCM3Q3 MPI-

REMO_ECHAM5-r3

CS3 HC-
HadRM3_HadCM3Q16

DMI-
HIRHAM5_BCM 

HC-
HadRM3_HadCM3Q3

HC-
HadRM3_HadCM3Q0 

SMHI-
RCA_HadCM3Q3 

CS4 HC-
HadRM3_HadCM3Q16

DMI-
HIRHAM5_BCM 

SMHI-
RCA_HadCM3Q3 

DMI-
HIRHAM5_ARPEGE 

SMHI-
RCA_HadCM3Q3 

CS5 HC-
HadRM3_HadCM3Q16

DMI-
HIRHAM5_BCM 

DMI-
HIRHAM5_ARPEGE 

KNMI-
RACMO2_ECHAM5-r3 

MPI-
REMO_ECHAM5-r3

CS6 HC-
HadRM3_HadCM3Q16

DMI-
HIRHAM5_BCM 

DMI-
HIRHAM5_ARPEGE 

ICTP-
RegCM_ECHAM5-r3 

SMHI-
RCA_ECHAM5-r3 

CS7 HC-
HadRM3_HadCM3Q16

DMI-
HIRHAM5_BCM 

DMI-
HIRHAM5_ARPEGE 

KNMI-
RACMO2_ECHAM5-r3 

ETHZ-
CLM_HadCM3Q0 

4 Results 

4.1 Evaluation 
QM	is	a	well-established	technique	which	already	has	been	successfully	employed	in	numerous	
climate	 change	 impact	 studies,	 for	 instance	 in	 the	EU	 funded	projects	CLAVIER	 (www.clavier-
eu.org),	ACQWA	(www.acqwa.ch),	and	IMPACT2C.	Evaluation	results	(partly	supported	by	these	
projects)	have	been	published	by	Themeßl	et	al.	(2011;	2012),	Finger	et	al.	(2012),	and	Mendlik	
et	al.	(2012).		Summing	up,	QM	is	a	robust	and	flexible	method.	It	successfully	draws	erroneous	
frequency	distributions	 from	climate	models	 towards	 those	of	 the	 reference	data	and	corrects	
biases	by	at	least	one	magnitude.	Latest	investigations	have	shown,	that	QM	affects	the	physical	
consistency	(given	by	the	climate	model)	between	multiple	meteorological	variables,	correlation	
coefficients,	 and	 auto	 correlation	 in	 a	 negligible	 way	 (Wilcke	 et	 al.,	 2013)	 as	 long	 as	 climate	
change	signals	for	averaged	quantities	(e.g.	mean	values)	are	investigated.	

In	ARANGE,	the	reference	data	is	given	by	the	baseline	climate	which	is	generated	by	a	weather	
generator	 (based	 on	 observational	 data)	 and	modified	 by	 empirical	 relationships	 in	 order	 to	
capture	local	effects	of	altitude,	slopes	and	aspects.	Although	given	in	time	series	on	a	daily	basis,	
the	baseline	climate	does	not	exactly	match	the	time	series	of	historical	weather	conditions.	It	
does	 also	 not	 show	 any	 historical	 trend,	 however other	 statistical	 properties	 (e.g.	 frequency	
distributions,	mean	values)	of	 the	underlying	observational	data	are	well	 captured	(Thurnher,	
2013).	Hence,	 this	 subsection	 focuses	 on	 demonstrating	 the	 effect	 of	QM	as	 it	 is	 employed	 in	
ARANGE.
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In	 case	 study	 region	 CS1,	 the	 simulation	 MPI-REMO_ECHAM5-r3	 is	 one	 of	 the	 representative	
climate	simulations (cf.	Figure	2	and	Table	2).	Looking	at	monthly	mean	biases	of	the	simulation	
with	 respect	 to	 the	 reference	 period	 (1961	 to	 1990),	 one	 may	 easily	 see	 that	 MPI-
REMO_ECHAM5-r3	 overestimates	 (underestimates)	 daily	 maximum	 temperatures	 (daily	
minimum	temperatures)	by	0.6°C	(-1.5°C)	on	average	(cf.	Figure	3)	and	shows	monthly	biases	in	
the	range	from -0.3°C	(-2.5°C)	and	1.7°C	(-0.6°C).	When	QM	is	applied,	the	biases	are	corrected:	
the	 overall	 bias	 nearly	 disappears	 and	 the	mean	monthly	 biases	 vary	between	 -0.2°C	 (-0.1°C)	
and	0.3°C	(0.3°C)	(cf.	Figure	3).	This	fundamental	behaviour	of	bias	reduction	is	observed	for	the	
other	variables,	too	(cf.	Figure	4	and	Figure	5),	and	it	is	also	observed	for	the	derived	variables	
(daylight	 temperature	and	vapour	pressure	deficit,	 cf.	Figure	5):	 since	MPI-REMO_ECHAM5-r3	
underestimates	minimum	 temperature,	 but	 captures	 daylight	 temperature	 quite	 well,	 vapour	
pressure	deficit	is	overestimated	by	93.3	Pa	on	the	annual	mean	(200	Pa	in	the	August	average;	
cf.	Figure	5)	 following	 the	dependency	of	vapour	pressure	deficit	 from	daylight	and	minimum	
temperature	(cf.	Equation	2).	Deriving	vapour	pressure	deficit	from	corrected	temperatures	also	
leads	 to	 a	 correction	 in	 the	 derived	 variable:	 the	 annual	 bias	 is	 reduced	 to	 -3.2	Pa	 and	 the	
monthly	biases	range	between	-18.2	Pa	and	14.6	Pa.	The	strengths	of	QM	become	most	apparent	
for	global	radiation: in	this	specific	case,	a	big	underestimation	of	solar	radiation	(-166.6	W/m²	
on	 the	 annual	 mean)	 is	 drastically	 reduced	 (to	 -1.1	W/m²	 as	 annual	 mean	 value)	 and	 the	
seasonality	of	the	biases	is	largely	corrected	(cf.	Figure	4).		

However,	the	inter	annual	spread	of	biases	(expressed	in	terms	of	whiskers	in	Figure	3,	Figure	4,	
and	Figure	5)	remains.	This	is	related	to	the	limits	of	the	correction	method:	since	QM	does	not	
affect	the	correlation	coefficient,	a	reduction	of	the	spread	cannot	be	expected.		

This	 systematic	 correction	of	RCM	biases	due	 to	 the	 application	of	QM	has	been	 found	 for	 all	
simulations	and	in	all	case	study	regions.		
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Figure	 3:	 Monthly	 biases	 for	 daily	 maximum	 and	 minimum	 temperature	 of	 the	 simulation	 MPI-
REMO_ECHAM5-r3	(left	column:	raw	model	output;	right	column:	after	bias	correction)	of	the	period	1961	
to	1990	in	case	study	region	CS1,	Cabeza	de	Hierro,	on	a	flat	plane	elevated	to	2000	m.
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Figure	4:	Same	as	Figure	3,	but	for	precipitation	and	solar	radiation.	
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Figure	 5:	 Same	 as	 Figure	 3,	 but	 for	 the	 derived	 variables	 daylight	 temperature	 and	 vapour	 pressure	
deficit.

4.2 Representative Climate Change Scenarios 
An	overview	of	climate	change	effects	on	all	variables	in	all	case	study	regions	is	shown	in	Table	
3.	 While	 temperatures	 and	 temperature	 based	 variables	 (like	 vapour	 pressure	 deficit)	 are	
expected	to	increase	throughout	the	case	study	regions,	precipitation	and	solar	radiation	do	not	
show	 such	 a	 consistent	 behaviour.	 In	 addition	 to	 regional	 deviations	 (increase	 in	 Northern	
Europe,	decrease	 in	Southern	Europe;	also	known	as	 the	European	Climate	Change	Oscillation	
(Giorgi	and	Coppola,	2007;	Heinrich	et	al.,	2013)),	precipitation	also	shows	deviations	along	the	
annual	cycle	(shifts	to	positive	changes	in	the	winter	half	year).	For	instance,	in	CS4,	the	Dinaric	
Mountains,	precipitation	is	expected	to	decrease	in	summer	and	to	increase	in	winter.	In	CS3,	the	
Eastern	Alps,	and	CS6,	the	Carpathians,	both	options	(increase	and	decrease)	seem	to	be	equally	
possible	 for	 precipitation	 in	 one	 half	 year	 (i.e.	 in	 summer);	 that	 means,	 the	 five	 underlying	
climate	 simulations	 partly	 show	 a	 decrease	 and	 partly	 an	 increase.	 This	 indicates	 high	
uncertainty	 in	 the	 climate	 change	 effect	with	 respect	 to	 summer	 precipitation	 in	 that	 region.
Highest	uncertainty,	in	general,	may	be	expected	for	solar	radiation:	five	out	of	 the	seven	case	
study	regions	experience	both,	increase	as	well	as	decrease.		
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Table	3:	Ranges	of	climate	change	signals	(2071	to	2100	vs.	1961	to	1990)	in	the	case	study	regions	for	a	
flat	plane	on	highest	elevations.	Changes	of	the	averaged	summer	half	year	(April	16th	to	September	15th)	
and	winter	half	year	(in	parentheses)	are	shown.

Daylight 
temperature 

[°C]

Maximum 
temperature 

[°C]

Minimum 
temperature 

[°C]

Precipitation 
[%] 

Water vapour 
pressure deficit 

[%] 

Solar radiation 
[%] 

CS1 Cabeza 
(2000 m) 

3.2 to 6.4  
(3.2 to 5.2) 

3.3 to 6.6 
(3.5 to 5.6) 

2.8 to 5.9 
(2.4 to 4.3) 

-52.0 to -27.5 
(-24.4 to 3.0) 

22.7 to 53.3 
(55.5 to 85.0) 

2.5 to 6.4 
(2.2 to 9.6) 

CS1 Valsain 
(2000 m) 

3.5 to 6.9 
(3.5 to 5.8) 

3.5 to 6.9 
(3.8 to 6.1) 

3.4 to 6.9 
(2.7 to 5.1) 

-51.9 to -23.6 
(-20.6 to 2.4) 

21.6 to 52.1 
(52.2 to 84.5) 

2.5 to 7.8 
(2.4 to 10.7) 

CS2 (1800 m) 1.7 to 5.3 
(3.4 to 5.6) 

1.7 to 5.7 
(3.6 to 6.0) 

1.7 to 4.4 
(2.9 to 4.8) 

-49.2 to 0.6 
(3.8 to 22.8) 

10.4 to 52.3 
(33.6 to 64.7) 

0.1 to 8.4 
(-3.9 to 5.2) 

CS3 (2000 m) 1.7 to 5.3 
(4.0 to 7.4) 

1.7 to 5.8 
(4.4 to 8.2) 

1.7 to 4.1 
(3.0 to 5.2) 

-26.8 to 13.3 
(5.4 to 37.6) 

11.1 to 67.0 
(65.4 to 151.5) 

-2.7 to 7.3 
(-6.1 to 2.0) 

CS4 (1800 m) 1.4 to 5.0 
(2.8 to 6.1) 

1.4 to 5.2 
(2.8 to 6.5) 

1.4 to 4.5 
(2.7 to 5.1) 

-42.4 to -5.0 
(-2.0 to 19.4) 

9.4 to 41.9 
(25.7 to 70.0) 

-12.7 to 3.9 
(-7.5 to 3.7) 

CS5 (800 m) 2.1 to 5.4 
(4.4 to 6.4) 

2.1 to 5.7 
(4.0 to 6.1) 

2.1 to 4.7 
(5.3 to 7.2) 

2.6 to 28.0 
(22.7 to 64.8) 

9.4 to 50.3 
(24.8 to 56.5) 

-11.4 to -0.2 
(-6.2 to 1.3) 

CS6 (1550 m) 1.2 to 4.5 
(3.0 to 6.3) 

1.2 to 4.8 
(3.1 to 6.6) 

1.2 to 3.7 
(3.0 to 5.4) 

-28.5 to 9.6 
(12.3 to 53.8) 

7.3 to 43.6 
(33.9 to 87.9) 

-8.4 to 4.5 
(-9.4 to 1.1) 

CS7 (2000 m) 2.1 to 6.4 
(3.0 to 6.7) 

2.2 to 6.8 
(3.1 to 7.2) 

1.7 to 5.3 
(2.7 to 5.3) 

-47.9 to -15.8 
(-22.3 to -1.9) 

18.8 to 65.0 
(33.1 to 96.6) 

-17.9 to 6.6 
(-13.3 to 9.4) 

The	 temporal	 evolution	 of	 temperature,	 precipitation,	 vapour	 pressure	 deficit,	 and	 solar	
radiation	 is	 exemplarily	 shown	 for	 CS1	 (Figure	 6).	 These	 time	 series	 of	 annual	 mean	 values	
depict	the	climate	change	effect	and	its	uncertainty	in	this	case	study	region.	From	Figure	6	one	
may	see	the	following effects:	(1)	the	range	of	 the	climate	simulations	increases	with	time	and	
hence,	uncertainty	in	climate	projections	 for	the	end	of	the	21st	century	is	 larger	than	for	near	
future	projections.	 (2)	The	annual	variability	of	 single	simulations	 increases	with	 time	and,	 in	
particular,	 becomes	 larger	 than	 the	 variability	 of	 the	 baseline	 climate.	 Hence,	 changes	 in	
meteorological	conditions	from	one	year	to	the	next	are	expected	to	progressively	increase	and	
exceed	current	conditions.		

A	complete	set	of	half	year changes	for	all	case	study	regions	can	be	found	in	the	Appendix.	

The	five	selected,	downscaled,	and	corrected	climate	simulations	consist	of	time	series	on	a	daily	
bases	for	daylight,	minimum,	and	maximum	temperature,	precipitation,	vapour	pressure	deficit,	
and	 global	 radiation	 covering	 the	 period	 2001	 to	 2100.	 They	 also	 take	 account	 for	 local	
characteristics	of	 the	orography	(altitude,	slope	and	aspect).	 In	 the	final	step	these	 time	series	
are	converted	into	the	same	file	format	(Thurnher,	2013)	as	it	is	used	for	the	baseline	climate.	
This	simplifies	the	usage	of	the	data	in	forest	and	ES	models.		

The	climate	change	data	files	are	available	via	the	ARANGE	Internal	Communication	Platform.			
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Figure	6:	Effect	of	climate	change	in	CS1,	Cabeza	de	Hierro,	expressed	in	terms	of	the	evolution	of	annual	
mean	values	of	daylight,	minimum,	and	maximum	temperature,	precipitation,	vapour	pressure	deficit,	and	
global	radiation	(all	bias	corrected)	from	1961	to	2100.	The	graphs	depict	the	selected	representative	five	
simulations	(cf.	Table	2;	coloured	lines)	and	the	baseline	climate	(black	line).	
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Appendix  Climate Change Signals 

Figure	 A-1: Climate	 change	 signals of	 daylight	 temperature	 [°C],	 precipitation	 [%],	 solar	 radiation	
[W/m²],	 and	 vapor	 pressure	 deficit	 [Pa]	 in	 case	 study	 region	 CS1,	 Cabeza	 de	 Hierro,	 on	 a	 flat	 plane	
elevated	to	2000	m.		Differences	between	the	periods	1961	to	1990	and	2071	to	2100	of	half	year	means	
(summer	half	year:	upper	row;	winter	half	year:	lower	row)	from	downscaled	and	corrected	ENSEMBLES	
simulations	are	shown.	Selected	representative	simulations	are	labeled.
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Figure	A-2:	Same	as	Figure	,	but	for	case	study	region	CS1,	Montes	Valsain.
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Figure	A-3:	Same	as	Figure	,	but	for	case	study	region	CS2,	Western	Alps	in	1800	m	altitude.	
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Figure	A-4:	Same	as	Figure	,	but	for	case	study	region	CS3,	Eastern	Alps	in	2000	m	altitude.	
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Figure	A-5:	Same	as	Figure	,	but	for	case	study	region	CS4,	Dinaric	Mountains	in	1800	m	altitude.	
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Figure	A-6:	Same	as	Figure	,	but	for	case	study	region	CS5,	Scandinavian	Mountains	in	800	m	altitude.	
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Figure	A-7:	Same	as	Figure	,	but	for	case	study	region	CS6,	Carpathians	in	1550	m	altitude.	
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Figure	A-8:	Same	as	Figure	,	but	for	case	study	region	CS7,	Western	Rhodopes	in	2000	m	altitude.	


